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Introduction 
 
The California Nevada River Forecast Center (CNRFC) is one of 13 National Weather 
Service (NWS) River Forecast Centers in the United States.  In support of fulfilling the NWS 
hydrologic mission of protecting lives and property, the CNRFC provides river and flood 
forecasts for California, Nevada, and a portion of Southern Oregon.   Cool season rainfall 
runoff is the primary driver for high flows in many of the CNRFC’s watersheds, a significant 
portion of which have response times less than 12 hours.  Thus, CNRFC river forecasts 
depend heavily on quantitative precipitation forecasts (QPF).   
 
In October of 2000, the National Precipitation Verification Unit (NPVU) was established by 
the Office of Climate, Water, and Weather Services (OCWWS) and is located at the 
Hydrologic Prediction Center (HPC) for the purpose of collecting, displaying and archiving 
QPF metrics.   Verification metrics from the NPVU are available since November 2000 for 
the CNRFC.   This paper attempts to ascertain the QPF verification trends that can be 
distinguished from this rich set of data.  Given the importance of QPF in forecasting rivers 
at the CNRFC, understanding QPF verification trends may help the CNRFC tune the river 
forecasting process to generate overall improvements in their forecasts.   Additionally, it is 
important to quantify the improvement, if any, that the human forecaster provides in the 
QPF inputs to the hydrologic model.  From the CNRFC perspective, the three most 
important questions to answer are:  How has the CNRFC forecast skill changed over time?   
Is value being added at each stage in the process?  What is the Bias?   
 
Verification Metrics  
 
Threat Score and Bias are used in this paper to evaluate and discuss the questions 
presented.  Threat Score is a metric that describes how accurately a forecast threshold 
matches the observations both spatially and temporally, while Bias is a metric that reflects 
how much area a forecast covers for a given threshold verses the area covered by the 
observations for that same threshold: 
 
area forecast = Af, 



area observed= Ao, 
area correctly forecast= Ac, 
 
Threat Score = Ac/( Af + Ao - Ac), 
 
Bias = Af/Ao. 
 
Thus, the Threat Score for a given threshold amount represents the ratio of the area where 
the forecast matches the observations over the area covered by either the forecast or the 
observations.  A perfect score of 1 results when the forecast area and location match the 
observed area and location. 
 
Regarding Bias in this case, just the size of the area covered matters.  A perfect Bias will 
have the forecast and observations equal in area and the score will equal 1.  A wetter or 
high Bias (greater than 1) is one where the forecast area for the threshold is larger than the 
observed area.  A dryer or low Bias (less than 1) is one where the forecast area for the 
threshold is smaller than the observed area.  A perfect Threat Score by definition must have 
a perfect Bias, but a perfect Bias does not mean a perfect Threat Score since the Bias does 
not look at how well the areas match up in location, just in size.   
 
The CNRFC is interested in long term trends in QPF skill for conditions that are likely to 
impact river flows.  Thus, the focus is on cool season precipitation where areal amounts 
exceed 0.50 inches in any six-hour period on a 32km HRAP grid at 6hr intervals.  The GFS 
and RFC forecasts and the observations have both been remapped from their original grids 
to this verification grid.  The HPC grid is native to the verification grid.  The verification 
metrics are readily accessible for the “cold season” from the NPVU (October through March, 
except November through March for 2000) and for categorical amounts exceeding 0.50 
inches in six hours in the form of Threat Score.  This “cold season” coincides reasonably 
well with the Mediterranean climate that predominates over California, where most of the 
annual precipitation falls during the months from October to April.   
 
For the purposes of this paper, the QPF process represents a cascade starting from the 
numerical model guidance availability to HPC forecasters and ending with the CNRFC 
forecasters.  Consequently, there is a temporal disconnect between all three sources of QPF, 
which is something that should be considered when comparing the QPF metrics.  The GFS 
reflects a 0000 UTC forecast basis, while it is typically available to the field beginning 
around 0300 UTC.  The HPC forecast, which is based on the 0000 UTC GFS, is considered to 
be anchored at 1200 UTC and is published for the CNRFC's use around 1000 UTC.  The 
CNRFC forecast is also considered to have a 1200 UTC basis, although it is published near 
1500 UTC.       
 
Currently, the verification metrics that are easily accessible from the NPVU are lumped 
over the entire CNRFC domain.  Although it would be useful to examine long term trends 
for smaller domains with similar hydrologic characteristics (e.g., the California North 
Coast), it is not necessary for the general purposes of this study.  
 



Analysis and Discussion 
 
How has the CNRFC forecast skill changed over time? Figure 1 shows the Threat Score 
computed over each cool season for the CNRFC, HPC and the Global Forecast System (GFS) 
numerical model.   The scores are for events defined by occurrences where either the 
observations or forecasts equaled or exceeded 0.50 inches in a six-hour period for all 
forecasts in day 1 (F06, F12, F18, and F24) over the cool season only (Oct-Mar).  A linear fit 
to the data is annotated for each of the forecast sources.   Also plotted in figure 1 is the 
number of observations for each season, to highlight periods with relatively low sample 
sizes, such as in the 2000, 2006 and 2008 seasons. 
 
There are several things that stand out in figure 1.  First, it is very clear that seasonal skill 
in the CNRFC forecasts closely parallels the skill in the HPC forecasts, upon which they are 
based.  Likewise, both the CNRFC and HPC forecast skill closely parallel the performance of 
the GFS model.   Earlier studies (Olson et al. 1995) pointed out that the increase in 
forecaster QPF accuracy over the years was more dependent on numerical model guidance 
than on the number of years of experience by the forecaster.  Reynolds (2003) articulated 
the value of the forecaster in QPFs.  He looked at long-term trends in the day-1 manual QPF 
Threat Scores over a 37-year period using the 1.0 inch threshold.   Reynolds asserted that it 
is not only appropriate to attribute the slow but steady rise in the manual forecast accuracy 
to a slow and steady rise in the accuracy of the numerical models but that any 
improvement beyond that produced by the models can be defined as the accuracy of the 
forecasters relative to the accuracy of the models.  
 
We can now consider whether value is being added at each stage in the process. Figure 1 
shows that for each season the HPC skill is higher than the GFS skill and the CNRFC skill is 
higher than the HPC skill, affirming that each step in the QPF process adds value.  Also, 
although it is apparent that improvement in QPF accuracy is slow and steady, the rate of 
change in improvement is evidently higher for the CNRFC forecast than for the HPC and 
GFS forecasts.   The CNRFC has invested heavily in its Hydrometeorological Analysis and 
Support (HAS) function, dedicating three meteorologists who focus solely on the forecast 
precipitation and temperature inputs to the hydrologic model.  This investment appears to 
be validated, not only due to the improvement in accuracy of the CNRFC forecasts over the 
HPC and GFS forecasts, but also as distinguished in the subtle, yet significant difference in 
the rate of improvement in the forecast.   There has been little turnover in the HAS 
forecaster ranks at the CNRFC over the past 10 years.  The higher rate of improvement for 
CNRFC forecasters could be attributed to the development of a shared experience base, 
given the concentration on a limited geographic domain (i.e., the CNRFC area of 
responsibility) and the focus on a narrow set of meteorological variables (i.e., temperature 
and precipitation).   Additionally, the availability of NPVU verification metrics may play an 
important role in providing feedback to the CNRFC HAS forecasters.     
 
There are a couple of caveats when considering the general attribution of added value by 
the HPC and CNRFC forecasters.  First, there is a temporal lag introduced in the cascading 
process, i.e., the CNRFC forecasters are operating closer in time to the forecast events than 
both the GFS and HPC, which gives them an advantage.  This advantage is especially 



significant in the first period, since the CNRFC forecast is actually issued a couple of hours 
after the stated forecast initial time.  Furthermore, additional guidance beyond the GFS is 
available to the forecaster.  For example, Novak (2010) argues that much of the HPC QPF 
skill is related to their access to the very skillful ECMWF deterministic and ensemble 
guidance.  HPC makes nearly a 30% improvement over the GFS, but only a 5-10 % 
improvement on the ECMWF.   It should also be noted that the verification metrics from the 
proprietary ECMWF model are not tracked by the NPVU.  
 

 
 
Fig 1.    A comparison of CNRFC, HPC and GFS day-1 seasonal (Oct-Mar) Threat Scores.  
The linear trends for each source are annotated and the number of observations is 
plotted in bar graph form for each season. 
 
So how can the aggregate value added by forecasters at HPC and the CNRFC be quantified?  
Reynolds (2003) related forecaster improvements made to the numerical guidance QPF to 
the number of years of model development required to reach the same level of accuracy.   
Looking at a plot of GFS forecast skill for day 1, (figure 1), considering a linear fit to the data 
and a reference year of 2000, it would take 12.4 years for the GFS accuracy to match the 
2000 CNRFC accuracy, while it took 4.5 years for the HPC forecasts to match the CNRFC 
accuracy in 2000.   
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Alternatively, if we now juxtapose the CNRFC plots of Threat Score for days 2 and 3 with 
that of the GFS for day 1 (figure 2), we see that the CNRFC forecast provides well over one 
day of lead time in accuracy compared to the GFS, actually closer to two days of lead time 
improvement. 
 
Examining the linear trends for the GFS model for the day-1, day-2 and day-3 forecasts 
(figure 3), the pace works out to 5.9 years for the day-2 accuracy to match the day-1 
accuracy, while it takes 10.4 years for the day-3 forecast to match the accuracy of day-1.    
From this view, we can say that the CNRFC forecast provides close to 10 years of GFS model 
development.   The question is sometimes posed as to whether it is worth the cost to 
manually modify the QPF given that model accuracy continues to improve, especially 
considering that numerical model improvements have become more frequent, making it 
harder for forecasters to track the Biases and potentially add value to the forecasts.   
Reynolds (2003) builds on the notion put forth by Doswell and Brooks (1998) that the 
benefit of the forecaster to the user community must be quantified and he demonstrated a 
14-year improvement in QPF accuracy for HPC forecasts over the numerical models.   Here 
we demonstrate that HPC and CNRFC human forecasters provide roughly a decade  
 

 
 
 
Fig 2.    A comparison of GFS day-1 and CNRFC day-2 and day-3 seasonal (Oct-Mar) 
Threat Score.  The linear trends for each day are annotated and the number of 
observations is plotted in bar graph form for each season. 
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Fig 3.    GFS days 1-3 seasonal (Oct-Mar) Threat Scores.  A linear fit to the data is 
annotated for each day.  The linear trends for each day are annotated and the 
number of observations is plotted in bar graph form for each season. 
 
worth of model development time, or about two days of improved lead time over the GFS 
model.  This validates the current paradigm of QPF production where HPC adjusts model-
produced QPF at a broad scale followed by further refinement by the CNRFC HAS unit.   
 
Figure 4 is similar to figure 1, but shows only the CNRFC scores for Days 1, 2, and 3.    
Again, if we consider a reference year of 2000 and examine the linear trends, what we find 
is that the CNRFC day-2 forecast accuracy took about 5.7 years to reach the day-1 accuracy, 
while the day-3 accuracy took about 10 years to reach the reference day-1 accuracy.   So 
just looking at the trends internally to the CNRFC, we can conclude that the CNRFC gains 
about one day of lead-time’s worth of QPF accuracy about every six years.   It also appears 
that relatively low sample size negatively impacts forecast accuracy, such as observed in 
the 2006 and 2008 seasons.    
 
One final piece of statistical information to consider is Bias.  Are the CNRFC forecasts 
Biased?   Figure 5 plots the seasonal Biases for the CNRFC, HPC and GFS day-1 QPFs.   One 
notable feature is that the GFS forecasts are remarkably unBiased.   The CNRFC forecasts 
have a dry Bias for the categorical events greater than or equal to 0.50 inches (0.87) while 
the HPC Bias is 1.08 and the GFS 1.03.    However, when considering all categories (figure 
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6), the seasonally averaged CNRFC Bias moves close to one (1.08) while both HPC and the 
GFS show wet Biases (1.20 and 1.30 respectively).  
 

 
 
 
Fig 4.    A comparison of CNRFC days 1-3 seasonal (Oct-Mar) Threat Score.   The linear 
trends for each day are annotated and the number of observations is plotted in bar 
graph form for each season. 
 
Summary and Conclusions 
 
Upon examining seasonal statistics for the CNRFC, HPC and the GFS, as depicted in Threat 
Score for six-hour QPFs in excess of 0.50 inches for day 1, it is clear that the accuracy is 
trending higher with time and numerical model guidance is likely driving the upward trend 
with HPC and CNRFC forecasters successively adding value to these forecasts.   The 
quantification of value added to the GFS QPF guidance by the CNRFC forecasters, which 
implicitly includes the value added by the HPC forecasters, translates to nearly two days of 
additional lead time or about a decade’s worth of model development.   Moreover, the 
CNRFC forecasts are gaining one day’s worth of lead-time in accuracy about every five to 
six years.   Thus we can say that in general, the CNRFC’s day 2 forecasts today are about as 
accurate as the CNRFC’s day 1 forecasts were six years ago. 
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This analysis indicates that the current paradigm in the production of QPF, which follows 
the “Snellman funnel” approach outlined in Snellman and Thaler (1993),  is working.   HPC 
modifies the QPF on a broad scale followed by more detailed scrutiny  at the CNRFC where 
regional expertise is incorporated.  Additionally, it appears that Snellman (1982) is 
vindicated in his strong conviction to keep meteorologists engaged in the forecast process 
in the face of increasing pressure to use straight model guidance, even after several 
decades of model development. 
 
Furthermore, the foresight and investment in establishing the NPVU a decade ago 
seems to be bearing significant fruit.   The feedback provided by the NPVU 
metrics is essential, both in helping forecasters to improve and in quantifying the value 
added by forecasters over the numerical model guidance.  
 

 
 
Fig 5.    A comparison of seasonal (Oct-Mar) Biases for the CNRFC,  
HPC and the GFS QPFs for events greater than or equal to 0.50 inches.     
The number of observations is plotted in bar graph form for each season. 
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Fig 6.   Seasonally (Oct-Mar) averaged Biases for the CNRFC, HPC  
and the GFS QPFs for day-1.  Categorical events >= 0.50 inches are  
shown alongside all categories. 
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